Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR.

نویسندگان

  • V Grüntzig
  • S C Nold
  • J Zhou
  • J M Tiedje
چکیده

We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirS), a functional gene of biogeochemical significance. The assay was tested in vitro and applied to environmental samples. The primer-probe set selected was specific for nirS sequences that corresponded approximately to the Pseudomonas stutzeri species. The assay was linear from 1 to 10(6) gene copies (r2 = 0.999). Variability at low gene concentrations did not allow detection of twofold differences in gene copy number at less than 100 copies. DNA spiking and cell-addition experiments gave predicted results, suggesting that this assay provides an accurate measure of P. stutzeri nirS abundance in environmental samples. Although P. stutzeri abundance was high in lake sediment and groundwater samples, we detected low or no abundance of this species in marine sediment samples from Puget Sound (Wash.) and from the Washington ocean margin. These results suggest that P. stutzeri may not be a dominant marine denitrifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The requirement of RpoN (sigma factor sigma54) in denitrification by Pseudomonas stutzeri is indirect and restricted to the reduction of nitrite and nitric oxide.

The rpoN region of Pseudomonas stutzeri was cloned, and an rpoN null mutant was constructed. RpoN was not essential for denitrification in this bacterium but affected the expression levels and enzymatic activities of cytochrome cd1 nitrite reductase and nitric oxide reductase, whereas those of respiratory nitrate reductase and nitrous oxide reductase were comparable to wild-type levels. Since t...

متن کامل

Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR.

Denitrification, the reduction of nitrate to nitrous oxide or dinitrogen, is the major biological mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Microorganisms capable of denitrification are widely distributed in the environment but little is known about their abundance since quantification is performed using fastidious and time-consuming MPN-based approaches. ...

متن کامل

Kinetics of CO binding and CO photodissociation in Pseudomonas stutzeri cd(1) nitrite reductase: probing the role of extended N-termini in fast structural relaxation upon CO photodissociation.

cd(1) nitrite reductase from Pseudomonas stutzeri is a di-haem- containing enzyme, comprising a c-type haem and a d-type haem. Studies with the highly related cd(1) nitrite reductase of Pseudomonas aeruginosa have established that this enzyme undergoes fast (microsecond) and global structural relaxation upon CO photodissociation from the reduced enzyme. A key difference between the Ps. aerugino...

متن کامل

Nitrite reductase genes in halobenzoate degrading denitrifying bacteria.

Abstract Diversity of the functional genes encoding dissimilatory nitrite reductase was investigated for the first time in denitrifying halobenzoate degrading bacteria and in two 4-chlorobenzoate degrading denitrifying consortia. Nitrite reductase genes were PCR-amplified with degenerate primers (specific to the two different types of respiratory nitrite reductase, nirS and nirK), cloned and se...

متن کامل

Isolation of TEM beta-lactamase gene in Pseudomonas aeruginosa and Imipenem Effect on Expression of TEM Gene by Real-Time PCR from Burn Wound Samples

Background & Aim: Pseudomonas aeruginosa strains that were resistance to majority of commonly used antibiotics were caused problem in treatment of these infections. Imipenem is the excessive potential antibiotic for elimination of antibiotic resistance isolates of these bacteria. Aim of this study was, identification of imipenem effect on TEM beta-lactamase gene expression in resistant to antib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 2001